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ABSTRACT

We present an architecture of an

intelligent restructurable control system

to automatically detect failure of system

components, assess its impact on system

performance and safety, and reconfigure

the controller for performance recovery.
Fault detection is based on neural net-

work associative memories and pattern

classifiers, and is implemented using a
multilayer feedforward network. Details

of the fault detection network along with

simulation results on health monitoring of
a de motor have been presented. Con-

ceptual developments for fault assessment
using an expert system and controller

reconfiguration using a neural network are
outlined.

I. INTRODUCTION

With the increased demand for re-

liability and safety, there is a need for

an intelligent restructurable control system

which has the ability to detect a system
fault as early as possible and restructure
the controller in the event of a failure. In

addition such intelligent control systems
must operate in real time or near real

time so as to be able to predict faults
before their actual occurrence. The

intelligent control systems should also be

able to classify a fault in terms of its type
and severity for the human supervisor or

an expert system supervisor monitoring the
performance of the system.

In this paper we propose an In-

telligent Restructurable Control System
consisting of three functional modules or

subsystems: a) a Fault Detection and

Isolation module, b) a Fault Assessment

and Strategy Development module, and c)
a Control Reconfiguration module. The

fault detection subsystem utilizes a neural
network that detects and classifies faults

by associating the faults with patterns
of sensor data. Fault assessment and

strategy development require analyses
of linguistic phrases and decision mak-

ing so that an expert system is the

best tool for the implementation of this

module. Since control reconfiguration
must be carried out in real time or

near time, suitable table lookup or
parallel computational facility is essential

for controller reconfiguration. Thus

this intelligent control system integrates

three of the emerging technologies that

have become synonymous with intelligent

control, namely, neural network, expert

system, and parallel processing.

The paper is organized as follows:

Section II presents the intelligent restruc-

turable control system architecture which

is followed by development of the FDI
neural network and simulation results in

Section III. The paper is concluded with
some remarks in section IV.
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II. AN INTELLIGENT fault condition. Since neural networks

RESTRUCTURABLE CONTROL SYSTEM are known to perform best as pattern
classifiers, a neural network fault identifier

A restructurable control system must

have the capability to accommodate au-

tomatically for any unanticipated failure

of system components, and to reconfigure
the controller by way of a real time

redesign of the control system. The key
feature that is of fundamental concern

in this respect is that the response time
is limited. The complete restructurable

control problem may be broken into three
distinct but interrelated problems:

1) Fault detection and isolation (FDI),

2) Assessment of the FDI results and

strategy development

3) Control reconfiguration, and

In this paper we propose an Intel-

ligent Restructurable Control System as
shown in Figure 1 consisting of three
functional modules or subsystems: a) a

fault detection and isolation module, b) a

fault assessment and strategy development

module, and c) a control reconfiguration
module. Once the controller is redesigned

following a failure, implementation of the
controller must be carried out through

available hardware/software. The fol-

lowing subsections outline the underlying

principles of operation of each of the
above modules.

2.1 Fault Detection and Isolation

Two key requirements for the fault

detection system are:

a) It must operate in real time or
near real time

b) It must classify the fault in terms

of its type and severity.

The proposed diagnostic neural net-
work methodology for failure detection
is based on the analyses of patterns of

plant sensor data. In this approach, a

fault is conceptualized as a mapping or

association of a pattern of the process

data (measured through sensors) to a

is used in this FDI subsystem.

2.2 Fault Assessment

and Strategy Development

Once the FDI subsystem has detected
and identified a failure, an assessment of

the FDI results must be made. As one

may expect, this task may require analysis

of linguistic phrases and decision making;

thus an expert system is required in this

subsystem. The expert system accepts
information from the fault identification

(FDI) neural network, and classifies the
fault as 1) a survivable fault, or 2) a

catastrophic fault. In the event of a
survivable fault, the expert system will

prescribe immediate notifications to the
Control Reconfiguration subsystem.

2.3 Control Reconfiguration

The Control Reconfiguration subsys-

tem actually redesigns the controller for

the faulty system. For high speed

dynamic systems, computation time for
control redesign is an important factor

in choosing the method to be used. A

two stage control reconfiguration strategy

is proposed in this paper: 1) a fast inner

loop stabilizing controller for immediate
stabilization of the faulty system imple-

mented through neural network, and 2)
a more accurate outer loop performance

recovery controller implemented through

vector/parallel processor. The inner loop
controller stabilizes the system and brings

it to safety. The outer loop controller
recovers as much of the prefault system

performance as possible [10].

In this paper we present the details
of the fault detection and isolation sub-

system. Research for implementation of
the other two subsystems is in progress.
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HI. FAULT DETECTION AND ISOLATION

3.1 Background

Traditionally, human evaluation has

been used as a primary means of fault

detection, however this is grossly inade-

quate and prone to misjudgments. The
earliest methods of failure detection have

been based on limit violation and/or trend

violation [1] of sensor data. Since human
evaluation could be unrealiable, analysis

of sensor data [2,3] to extract certain
characteristic features of the process

has been suggested. These analyses

include computation of process efficiency,
estimation of frequency spectrum, and the
autocorrelation function, etc. requiring

the use of Kalman filters, observers, and

FFTs.

Another method of identifying a fault

is by measurement or estimation of

parameters [4,5,6,7] that govern the input-
output mapping of the process. Least

square estimation, Kalman filter [5], max-
imum likelihood estimation [6] are carried

out to estimate the unknown parameters.

However, this method suffers from lack of

uniqueness which may lead to false alarms

and/or wrong diagnosis of faults.

The use of neural network as an

effective alternative for failure detec-
tion and classification to overcome the

inherent drawbacks of the traditional

methods has become a subject of current

research interest. An application of
neural networks for failure detection has

been reported in [8,9] for the detection of

incipient fault in a single phase induction
motor.

3.2 Neural Network Based

Failure Detection and Isolation

This section presents the proposed
Failure Detection and Isolation (FDI)

subsystem based on artificial neural net-

work. The primary function of the

FDI system is fault identification and
determination of the type of fault and

its level of severity. Fundamentally, a
fault can be considered as a mapping

or association from fault scenarios to

patterns of sensor data. Neural networks
are known to perform best as associative
memories and pattern classifiers, and
hence is used as the basic building block

of the FDI system.

3.2.1 Fault Representation

One of the functions of the FDI

subsystem is to classify a fault in terms of

its type and its level of severity. The types
of faults that may occur in a dynamical

system are very much system specific.
Levels of severity can be classified in
several discrete conditions such as severe

fault, mild fault, normal operation etc.

In any case we can designate typical
fault conditions in terms of a set, say

F1,F2,'" .F,_. This set of faults includes
both the type of fault as well as the

severity of the fault. For example: F1 may
represent mild (level of severity) damage
of a steam valve (type of fault) while F2

may represent a more severe version of
the same fault or a different kind of fault

altogether.

3.2.2 Network Architecture

Since the Failure Detection and Iso-

lation system is based on associative
memories and pattern classifiers, a mul-

tilayer feedforward network is considered
as the basic network topology for the FDI

system. The network is arranged into

an input layer, an output layer, and one
or more hidden layers. The input layer
receives sensor data information from the

process, and the output layer provides the

fault diagnostic information.

The number of neurons in the input

layer is equal to the number of sensors
that carry out the measurement of various

quantities in the process. The neurons in

the input layer have linear input-output

mapping. The neurons in the hidden

layer(s) have a sigmoidal input-output
map. The number of neurons in the
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hidden layer(s) must be sufficiently large
so that the fault library (or the stored
fault scenarios) of the network is of an
acceptable size for a given system.

The number of neurons in the output
layer is equal to the number of bits of
the binary number corresponding to the
number of faults that must be identified

by the FDI network. The neurons in

the output layer have sigmoidal input-
output mapping so that each neuron can
take discrete values 0 or 1. The on-

off status of the neurons in the output
layer is translated to a fault code or fault

number corresponding to certain type of
fault at certain level of severity. For
example, consider a system in which 16
faults F1,F2,... F16, are to be identified.
Then the output layer must have 4 nodes.

3.2.3 Training

Training of a neural net is the process
by which the values of the weights
are determined based on historical fault

data. For the purpose of training it is
essential that historical or simulated fault

data be available representing various
types of faults along with their possible
levels of severity. Training of the
FDI network may be done using the
back propagation [11,12] algorithm or
other adaptive training algorithms [13].
Also, pruning algorithms can be used
for the purpose of reducing the number
of interconnection of the neurons in the
network.

3.2.4 Example:
Fault Monitoring of a DC Motor

The Failure Detection and Isolation

(FDI) system described above has been
used for monitoring of the health status of
adc motor. The state of the dc motor can
be described in terms of three state vari-

ables, such as speed of rotation, armature
current, and temperature. These are also
physically measurable variables through
appropriate sensors. The control input
to the motor is the armature voltage.

It was desired to monitor the perfor-
mance the motor in terms of five different

types faults, such as
a) Faulty Controller
b) Partially shorted winding
c) Excessive bearing friction
d) Motor overload
e) Blocked ventilating system

at three levels of severity, such as
a) Mild
b) Moderate
c) Severe

Thus corresponding to the five dif-
ferent types of faults at three levels of
severity, a total of 15 possible (single)
faults must be identified along with one
normal operating state. Each of these
16 faults are then assigned a unique
binary number ranging from 0000 to 1111
with 0000 being the no fault and 1111
representing a severely faulted motor.
Clearly this requires 4 nodes in the output
layer of the FDI network. Since there are
three measurable signals available from
the motor, the input layer has 3 nodes,
one for each sensor signal. The FDI
network was assumed to have two hidden

layers with eleven nodes in each layer.
The number of nodes in the hidden layers
were determined after some trial and
error simulation.

In order to train the FDI neural

networks to give correct responses a large
data base of fault data was generated
through computer simulation of the motor
dynamics given in the appendix. Training
of the network was completed after
several training sessions. Figure 2 shows
reduction of the rms error of the output
nodes of the network as a function

training runs. Convergence of a few of
the synaptic weights are shown Figure 3.
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Fig. 3 Convergence of Synaptic Weights

After the completion of training, the

FDI system was tested to monitor the
health status of the motor. Various faults

were simulated on the motor, and the
fault data from the motor was applied

to the input layer of the FDI network.
The network compares the input pattern
with the fault patterns it has been trained

to recognize. The network was able to
recognize the faults with 95% accuracy.

IV. CONCLUSIONS

We present the architecture of an in-

telligent restructurable control system that

automatically identifies the occurrence of

a fault, and restructures the controller for

performance recovery.

The failure detection (FDI) subsystem

is implemented using a neural network.
The FDI network identifies the type of
fault as well as its level of severity. A

major advantage of this neural network
based method is that it identifies faults

that are characterized by changes in the
numerical values of process variables as
well as faults that are characterized by

changes in certain physical attributes of

the process.

APPENDIX

The dynamic model of a dc motor
driving a load is given by

=  vo-
B 1

do) Ki -_m 02 _ __mTioad

dT R_ -2 _ 1 Tambient--_-- = _--__/_ T+ R'm------_

where

R_, L_ : Armature resistance, Inductance

A : Armature current

w,T: Motor Speed, Temperature

Ki, Kb : Constants

CT_ : Thermal capacitance

J,,,, B: Motor Inertia, friction coefficient

Tt_d : Motor Load

RT_: Rotor Surface heat transfer coefficient
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